Improving Worldwide Adherence to
Nonproliferation Norms

We must not limit ourselves to controlling the supply of weapons of mass destruction and their missile delivery systems; we must also concentrate on reducing the demand for them. International science and technology cooperation plays an important role in this connection-providing incentives for cooperative arms control and nonproliferation policies, offering new civilian opportunities for weapons experts, fostering reform-minded science and technology communities, supporting efforts to peacefully resolve conflicts and build confidence, and bringing international science and technology efforts to bear in addressing security problems and regional pressures that can contribute to proliferation.

Both the United States and the nations of the former Soviet Union are faced with the challenge of redirecting the talents of thousands of weapons scientists and engineers to new and productive tasks. The sweeping economic transformations shaking the former Soviet Union make this problem both more urgent-because of the risk of a "brain drain" to countries interested in acquiring weapons of mass destruction-and more difficult to resolve. To meet this challenge, the United States has established a wide range of cooperative programs to bring the extraordinary talents of former weapons scientists to bear on key civilian and national security problems.

Our international collaborative efforts to reduce proliferation risks include improving protection, accounting, and control of nuclear materials; preparing for entry into force of the CWC; integrating a global seismic network to detect nuclear blasts; finding new approaches to strengthen the BWC; and jointly exploring plutonium disposition options with Russian and other scientists. In regional contexts, collaborative efforts in arms control monitoring can serve as technical confidence-building measures. To this end, we have encouraged foreign government officials and scientists to participate in workshops at the Cooperative Monitoring Center at Sandia National Laboratory, where they can see for themselves technologies that can be applied to build security and confidence between potential adversaries.

International S&T cooperation can provide displaced weapons scientists with new challenges in civilian research, reducing possible incentives to sell their weapons expertise to potential proliferators. International S&T cooperation can also increase mutual understanding between the scientific communities of participating states of each others' activities and objectives and thereby build confidence. The United States and Russia have established extensive laboratory-to-laboratory contacts, and such contacts between the United States and China are developing. Laboratory-to-laboratory cooperation programs have included civilian research in such areas as high-intensity magnetic fields, plasma physics, and computing. These projects have not only kept former weapons scientists employed, but they have also made key technological contributions to scientific and security problems-to the benefit of both sides.

The Cooperative Threat Reduction Program

In the fall of 1991, conditions in the disintegrating Soviet Union posed a clear threat to nuclear safety and global stability. An estimated 30,000 nuclearweapons were spread among the former Soviet republics. About 3,200 strategic nuclear warheads were located outside Russia in the territories of Belarus, Kazakstan, and Ukraine. Political, social, and economic upheaval heightened the prospects that the former Soviet republics would not be able to provide for safeand secure storage or disposition of these nuclear weapons or other weapons of mass destruction.

The dangers posed by this situation were clear: new nuclear nations could spring fully formed from the collapse of the former Soviet Union; weapons might be diverted or used in an unauthorized manner; warheads and fissile materials might be sold to countries or groups with goals that are contrary to ours; and former Soviet weapons scientists and engineers might export their expertise or services to rogue countries and groups.

Congress responded to these conditions and associated threats by initiating the Cooperative Threat Reduction (CTR) program in November 1991. Often referred to as the Nunn-Lugar program, after the Senators who spearheaded the effort, this initiative provided the Department of Defense authority and funding to assist the eligible states of the former Soviet Union in weapons dismantlement and destruction, strengthening the security of nuclear warheads and fissile materials in connection with warhead dismantlement, and demilitarization of the Newly Independent States infrastructure.

The Administration has championed this program and made it an operational success. The CTR program is helping to ensure that nuclear and other weapons of mass destruction are adequately controlled and safeguarded and to prevent proliferation of these weapons and expertise. CTR assistance is facilitating theformer Soviet states in meeting and even accelerating their START obligations. To date, CTR has contributed to the removal of over 2,500 warheads from missile and bomber bases into secure central storage in Russia; the return to Russia of over 1,000 warheads that were located in Belarus, Ukraine, and Kazakstan; the deactivation of four regiments of SS-19 ICBMs in Ukraine; the removal of 750 missiles from their launchers and elimination of approximately 575 launchers andbombers throughout the former Soviet Union; and the current or projected reemployment of over 5,000 Russian weapon scientists and engineers on peaceful, civilian research projects. The Project Sapphire mission in November 1994 to remove 600 kilograms of highly enriched uranium to the United States from poorlysecured storage in Kazakstan was partially funded through CTR. In addition, CTR is assisting the Russians in preparing to implement the Chemical Weapons Convention.

Science and technology are at the heart of many of the CTR program activities. The science and technology centers in Moscow, Kiev, and Almaty help to redirect weapons scientists to commercial research. Defense conversion servesa similar goal, helping weapons manufacturers transfer their technological strengths into civilian products, with the assistance of U.S. companies. Providing environmentally sound destruction methods is helping ensure continued compliance with arms control treaties. And U.S. technology has provided solutions to some important bottlenecks in the dismantlement process. For example, U.S. experts are contributing to the design of a plutonium storage facility in Russia (including the features that will ensure that the material issecure and accounted for), and are helping to build a pilot plant for chemical weapon destruction. U.S. experts will also review Ukrainian proposals for safe disposition of liquid rocket fuel removed from SS-19s based in Ukraine. Developing solutions to these problems will allow dismantlement efforts to continue more quickly.

CTR is not traditional foreign aid. Rather, by directly addressing the dangers in the former Soviet Union concerning weapons of mass destruction, it isdefense by other means. The United States spent many billions of dollars during the Cold War to deter and defend against the Soviet Union's weapons of mass destruction. The CTR program is on a significantly smaller scale, but the payoffis tremendous. The results, unlike deterrence, are tangible, observable, and in some cases, immediate. The program also is helping to prevent the emergence of new threats as the new independent states continue to deal with the uncertainties and instabilities of post-Soviet sovereignty and independence.

Similarly, we have worked with the European Union, Japan, and other nations to establish the International Science and Technology Center in Moscow and a similar organization in Kiev. These centers are already employing thousands of former weapons scientists in work on nonmilitary projects, chosen through a painstaking process for their outstanding scientific or economic merit. In addition, at the Clinton-Yeltsin summit in May 1995, a new Civilian Research and Development Foundation was announced, which will provide funding to maintain Russia's world-class basic research enterprise.

To complement these programs with a more direct tie-in to economic applications, the Department of Energy has established the Industrial Partnering Program, which brings the talents of U.S. and Russian weapons laboratories together with the interests of industry. Every dollar the U.S. Government provides for a project in the Industrial Partnering Program is matched by industry. This is truly a partnership between government, industry, and the laboratories to bring new technologies out of the laboratory and into the marketplace. Industry has been an enthusiastic participant, and hundreds of projects are already under way.

Finally, international S&T cooperation can help engage and foster scientific communities that can be critical voices for reform. American scientists can influence the views of foreign counterparts in positive ways. From Andrei Sakharov in the former Soviet Union to Jose Goldemberg in Brazil, scientists with an international perspective-resulting in part from their participation in international S&T cooperation and other international forums-have played leading roles in national decisions to restrain weapons programs that threaten international security. Nongovernment organizations also can constructively engage scientists in threshold states and other problem countries to advance international nonproliferation norms. The Administration will continue to encourage international cooperation as a means of engaging the scientific community in the nonproliferation effort.

Conducting the Arms Control
and Nonproliferation S&T Program

The United States will pursue a robust and focused S&T strategy to support our arms control and nonproliferation objectives. In particular, we will do the following:

Arms control and nonproliferation S&T is fundamentally an interagency activity which involves many federal agencies, including the Arms Control and Disarmament Agency, the Departments of State, Energy, and Defense, and the Intelligence Community. Because no single agency has purview over both requirements and S&T resources, we have substantially improved coordination among these agencies through the National Science and Technology Council to ensure requirements are identified and addressed effectively.

In August 1994, following a comprehensive review, the President established the interagency Nonproliferation and Arms Control Technology Working Group (NPAC TWG), designating the Arms Control and Disarmament Agency, Department of Energy, and Department of Defense as cochairs. The NPAC TWG coordinates arms control and non-proliferation-related research and development governmentwide to help guard against redundancies and gaps.

Currently, the NPAC TWG is developing in-depth analysis of our R&D activities in chemical and biological warfare detection technologies, fieldable nuclear detectors, proliferation modeling, multispectral and active electro-optical sensing, underground detection techniques, research and development database consolidation, START verification sensors, nuclear test monitoring and verification technologies, and unattended remote sensors. In the future, additional in-depth analysis will be developed in other areas, including data fusion, advanced conventional weapons detection technologies, and other existing and future treaty-specific monitoring and verification technologies.

The Challenges Ahead

Arms control and nonproliferation require a dynamic blend of policy, technology, and diplomacy. There is an inevitable tension, however, between the competing incentives for controlling technology and sharing it. The technologies in which the United States has the lead are the most marketable in today's global economy, and emerging markets are among the most attractive for future economic growth. But advanced technologies can be used for destructive as well as constructive purposes. And emerging markets are often associated with developing nations and regions with less stable economic and political arrangements.

Purely economic factors would have us relax export controls on U.S. goods and services, while narrow security goals might lead us to protect all our own technology and intelligence products. Our nonproliferation goals, on the other hand, motivate us toward restrictive control of weapons-related technologies and increased sharing of detection, monitoring, and verification technology and intelligence products. We balance these competing imperatives by restraining trade-both ours and that of other countries-in potentially dangerous technologies and materials, promoting commercial interests without compromising security, and participating in carefully constructed monitoring and verification regimes.

While the inexorable spread of technology is a fundamental part of the nonproliferation problem, at the same time science and technology are great enablers for arms control and nonproliferation, broadening the range of the possible and offering an expanding array of options for policymakers and diplomats alike. The close engagement of the scientific community which we have fostered is indispensable for making sure our technology control policies are wise and effective, our S&T investments are well chosen, and our international cooperative efforts are most fruitful. We are steadfast in our commitment to applying our scientific and technical resources to the challenges of arms control and nonproliferation. To meet these challenges successfully will require not just the technology of today but also constant improvements that enable us to maintain our leadership position.